I'd say that its biggest weakness is probably the opposite. It tends to overuse the nearest available data point resulting in flat sections and fairly sharp transitions from one point dominating to the next. This results in functions that don't look very reasonable.

Playing around with the weighting should let you achieve an acceptable trade-off between one point dominating and distant points having too much of an impact. The choice is going to be empirical however, there isn't a "best answer" to this problem.

Furthermore if you know anything about what your underlying function looks like, you would probably do a lot better to use more traditional estimation techniques. In particular if you can get samples on some kind of useful grid, one of the usual curve-fitting algorithms will be easy to calculate and should give excellent results. Two standard kinds of often-used curve-fitting algorithms are polynomial (eg cubic splines) and wavelets.

Comment onRe: (zdog) Re: (2) Estimating continuous functions