Beefy Boxes and Bandwidth Generously Provided by pair Networks
P is for Practical
 
PerlMonks  

Re: Generalizing Code: Generating Unique Permutations

by ig (Vicar)
on Dec 17, 2008 at 05:34 UTC ( #730835=note: print w/ replies, xml ) Need Help??


in reply to Generalizing Code: Generating Unique Permutations

Your various examples and descriptions seem a bit inconsistent to me, so I am probably misunderstanding something. None the less, the following appears to do what your last example does, without the hard coded nested loops. It could easily be modified for different combinations of combinations and variations (ouch!)

update: replaced foreach loop in sub with a map to tidy it up.

use strict; use warnings; use Algorithm::Combinatorics qw(combinations variations_with_repetitio +n); my @data = ('A', 'B', 'C', 'D', 'E', 'F'); my $cardinality = 2; for my $cardinality (1..3) { print "\n\nCardinality: $cardinality\n"; my $dataref = getPairsOfCombinations(\@data, $cardinality); if ($dataref == 0) { die "Bad return\n"; } for (my $i = 0; $i < scalar(@$dataref); $i++) { print "( " . join( ',', map { "( " . join(',', @{$_}) . " )" + } @{ $dataref->[$i] } ) . " )\n"; } } exit(0); sub getPairsOfCombinations { my ($data, $cardinality) = @_; my @combinations = combinations(\@data, $cardinality); my @variations = variations_with_repetition([0..$#combinations], 2 +); return [ map { [ map { $combinations[$_] } @{$_} ] } @variations ] +; }

This produces the following (abridged)

Cardinality: 1 ( ( A ),( A ) ) ( ( A ),( B ) ) ( ( A ),( C ) ) ( ( A ),( D ) ) ( ( A ),( E ) ) ( ( A ),( F ) ) ( ( B ),( A ) ) ( ( B ),( B ) ) ( ( B ),( C ) ) ( ( B ),( D ) ) ( ( B ),( E ) ) ( ( B ),( F ) ) ( ( C ),( A ) ) ( ( C ),( B ) ) ( ( C ),( C ) ) ( ( C ),( D ) ) ( ( C ),( E ) ) ( ( C ),( F ) ) ( ( D ),( A ) ) ( ( D ),( B ) ) ( ( D ),( C ) ) ( ( D ),( D ) ) ( ( D ),( E ) ) ( ( D ),( F ) ) ( ( E ),( A ) ) ( ( E ),( B ) ) ( ( E ),( C ) ) ( ( E ),( D ) ) ( ( E ),( E ) ) ( ( E ),( F ) ) ( ( F ),( A ) ) ( ( F ),( B ) ) ( ( F ),( C ) ) ( ( F ),( D ) ) ( ( F ),( E ) ) ( ( F ),( F ) ) Cardinality: 2 ( ( A,B ),( A,B ) ) ( ( A,B ),( A,C ) ) ( ( A,B ),( A,D ) ) ( ( A,B ),( A,E ) ) ( ( A,B ),( A,F ) ) ( ( A,B ),( B,C ) ) ( ( A,B ),( B,D ) ) ( ( A,B ),( B,E ) ) ( ( A,B ),( B,F ) ) ( ( A,B ),( C,D ) ) ( ( A,B ),( C,E ) ) ( ( A,B ),( C,F ) ) ( ( A,B ),( D,E ) ) ( ( A,B ),( D,F ) ) ( ( A,B ),( E,F ) ) ( ( A,C ),( A,B ) ) ( ( A,C ),( A,C ) ) ( ( A,C ),( A,D ) ) ( ( A,C ),( A,E ) ) ( ( A,C ),( A,F ) ) ( ( A,C ),( B,C ) ) ( ( A,C ),( B,D ) ) ( ( A,C ),( B,E ) ) ( ( A,C ),( B,F ) ) ( ( A,C ),( C,D ) ) ( ( A,C ),( C,E ) ) ( ( A,C ),( C,F ) ) ( ( A,C ),( D,E ) ) ( ( A,C ),( D,F ) ) ( ( A,C ),( E,F ) ) ( ( A,D ),( A,B ) ) ( ( A,D ),( A,C ) ) ( ( A,D ),( A,D ) ) ... Cardinality: 3 ( ( A,B,C ),( A,B,C ) ) ( ( A,B,C ),( A,B,D ) ) ( ( A,B,C ),( A,B,E ) ) ( ( A,B,C ),( A,B,F ) ) ( ( A,B,C ),( A,C,D ) ) ( ( A,B,C ),( A,C,E ) ) ( ( A,B,C ),( A,C,F ) ) ( ( A,B,C ),( A,D,E ) ) ( ( A,B,C ),( A,D,F ) ) ( ( A,B,C ),( A,E,F ) ) ( ( A,B,C ),( B,C,D ) ) ( ( A,B,C ),( B,C,E ) ) ( ( A,B,C ),( B,C,F ) ) ( ( A,B,C ),( B,D,E ) ) ( ( A,B,C ),( B,D,F ) ) ( ( A,B,C ),( B,E,F ) ) ( ( A,B,C ),( C,D,E ) ) ( ( A,B,C ),( C,D,F ) ) ( ( A,B,C ),( C,E,F ) ) ( ( A,B,C ),( D,E,F ) ) ( ( A,B,D ),( A,B,C ) ) ( ( A,B,D ),( A,B,D ) ) ( ( A,B,D ),( A,B,E ) ) ( ( A,B,D ),( A,B,F ) ) ( ( A,B,D ),( A,C,D ) ) ( ( A,B,D ),( A,C,E ) ) ( ( A,B,D ),( A,C,F ) ) ( ( A,B,D ),( A,D,E ) ) ( ( A,B,D ),( A,D,F ) ) ( ( A,B,D ),( A,E,F ) ) ( ( A,B,D ),( B,C,D ) ) ( ( A,B,D ),( B,C,E ) ) ( ( A,B,D ),( B,C,F ) ) ( ( A,B,D ),( B,D,E ) ) ( ( A,B,D ),( B,D,F ) ) ( ( A,B,D ),( B,E,F ) ) ( ( A,B,D ),( C,D,E ) ) ( ( A,B,D ),( C,D,F ) ) ( ( A,B,D ),( C,E,F ) ) ( ( A,B,D ),( D,E,F ) ) ( ( A,B,E ),( A,B,C ) ) ( ( A,B,E ),( A,B,D ) ) ( ( A,B,E ),( A,B,E ) ) ( ( A,B,E ),( A,B,F ) ) ( ( A,B,E ),( A,C,D ) ) ( ( A,B,E ),( A,C,E ) ) ( ( A,B,E ),( A,C,F ) ) ( ( A,B,E ),( A,D,E ) ) ( ( A,B,E ),( A,D,F ) ) ( ( A,B,E ),( A,E,F ) ) ( ( A,B,E ),( B,C,D ) ) ( ( A,B,E ),( B,C,E ) ) ( ( A,B,E ),( B,C,F ) ) ( ( A,B,E ),( B,D,E ) ) ( ( A,B,E ),( B,D,F ) ) ( ( A,B,E ),( B,E,F ) ) ( ( A,B,E ),( C,D,E ) ) ( ( A,B,E ),( C,D,F ) ) ( ( A,B,E ),( C,E,F ) ) ( ( A,B,E ),( D,E,F ) ) ( ( A,B,F ),( A,B,C ) ) ( ( A,B,F ),( A,B,D ) ) ( ( A,B,F ),( A,B,E ) ) ( ( A,B,F ),( A,B,F ) ) ( ( A,B,F ),( A,C,D ) ) ( ( A,B,F ),( A,C,E ) ) ( ( A,B,F ),( A,C,F ) ) ( ( A,B,F ),( A,D,E ) ) ( ( A,B,F ),( A,D,F ) ) ( ( A,B,F ),( A,E,F ) ) ( ( A,B,F ),( B,C,D ) ) ( ( A,B,F ),( B,C,E ) ) ( ( A,B,F ),( B,C,F ) ) ( ( A,B,F ),( B,D,E ) ) ( ( A,B,F ),( B,D,F ) ) ( ( A,B,F ),( B,E,F ) ) ( ( A,B,F ),( C,D,E ) ) ( ( A,B,F ),( C,D,F ) ) ( ( A,B,F ),( C,E,F ) ) ( ( A,B,F ),( D,E,F ) ) ...


Comment on Re: Generalizing Code: Generating Unique Permutations
Select or Download Code

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://730835]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others making s'mores by the fire in the courtyard of the Monastery: (10)
As of 2014-07-25 08:19 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    My favorite superfluous repetitious redundant duplicative phrase is:









    Results (170 votes), past polls