Beefy Boxes and Bandwidth Generously Provided by pair Networks
Problems? Is your data what you think it is?
 
PerlMonks  

Re^2: Spooky math problem

by tilly (Archbishop)
on Mar 25, 2009 at 12:49 UTC ( #753111=note: print w/ replies, xml ) Need Help??


in reply to Re: Spooky math problem
in thread Spooky math problem

In standard mathematics there is no such thing as adjacent real numbers. Endless arguments from non-mathematicians notwithstanding, 1 and 0.999... are two different ways of representing the same number and not two different numbers.

This is because one of the rules the real numbers follow is trichotomy, which says that if x and y are real numbers then exactly one of the statements x-y>0, x=y and y-x>0 must be true. (Depending on the axiomatization chosen trichotomy can be either an axiom or a theorem. Either way it is true.) The requirement in the problem that the numbers be different rules out the second possibility.

In fact we can make an even stronger statement. There is a basic theorem (called the Archimedean principle) which makes an even stronger assertion, given any two distinct reals there is always a rational number between them. So let n/m be a rational number between 0 and x-y. Then x and y must differ by more than 1/m. So you see that between any two real numbers there is always a finite visible gap. There is therefore no such thing as an infinitesmal in the standard real number system.

(Google will provide adequate references to demonstrate that I'm not just making this up.)


Comment on Re^2: Spooky math problem
Re^3: Spooky math problem
by Anonymous Monk on Mar 29, 2009 at 07:31 UTC
    (Google will provide adequate references to demonstrate that I'm not just making this up.)
    You hacked google to become a reference so it would appear that way ... ;P

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://753111]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others perusing the Monastery: (12)
As of 2014-11-26 10:31 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    My preferred Perl binaries come from:














    Results (166 votes), past polls