Beefy Boxes and Bandwidth Generously Provided by pair Networks
more useful options
 
PerlMonks  

Re^2: Cartesian co-ordinate rotation around an Axis

by fraizerangus (Sexton)
on Aug 08, 2011 at 16:34 UTC ( #919281=note: print w/ replies, xml ) Need Help??


in reply to Re: Cartesian co-ordinate rotation around an Axis
in thread Cartesian co-ordinate rotation around an Axis

Hi Sorry I was trying to simplify the code, here's the working example:

#XYZ Coordinates of point 1 on the axis $Xl1 = -3.902; $Yl1 = 9.353; $Zl1 = -1.556; #XYZ Coordinates of point 2 on the axis $Xl2 = -47.470; $Yl2 = -2.908; $Zl2 = -17.596; #XYZ Coordinates of a midpoint on the axis $XlM = -20.284; $YlM = 4.548; $ZlM = -7.261; #XYZ data for all the cartesian co-ordinates to be rotated @BMxcord = ( -18.731, -19.287, -20.545, -21.421, -19.594, -18.388, -18 +.784, -17.107, -20.681, -21.870, -23.239, -24.201, -21.604, -20.782, +-19.827, -29.918, -29.341, -30.384, -31.579, -28.853, -29.953, -27.73 +5, -29.939, -30.878, -31.833, -33.036, -30.088, -29.320, -29.582, -28 +.457, -31.275, -31.996, -31.636, -30.654, -31.599, -30.210, -31.741, +-32.428, -32.135, -30.851, -30.080, -33.281, -34.391, -35.291, -33.83 +4, -30.598, -29.385, -28.185, -27.196, -29.374, -28.083, -28.213, -26 +.851, -26.976, -28.281, -27.192, -27.020, -25.897, -27.447, -27.316, +-26.408, -28.108, -28.126, -28.039, -27.400, -26.592, -29.432, -29.51 +5, -28.622, -30.990, -27.788, -27.250, -25.745, -25.000, -27.931, -27 +.790, -27.786, -27.688, -25.280, -23.859, -23.145, -22.033, -23.597, +-24.127, -23.878, -23.247, -24.368, -23.758, -23.128, -22.938, -21.86 +4, -24.018, -23.448, -22.595, -23.733, -22.035, -23.167, -22.322, -23 +.984, -23.948, -22.987, -22.261, -25.376, -26.289, -25.329, -27.739, +-22.959, -22.088, -20.683, -19.718, -22.774, -22.821, -24.225, -20.53 +1, -19.203, -18.510, -17.411, -19.234, -19.923, -19.918, -20.834, -18 +.981); @BMycord = ( -0.135, -1.473, -1.396, -0.553, -2.172, -2.409, -3 +.016, -3.128, -2.300, -2.245, -2.337, -1.730, -3.351, -4.304, + -3.453, -5.632, -6.925, -7.735, -7.459, -7.732, -8.003, -6.95 +8, -8.747, -9.551, -10.352, -10.461, -10.510, -9.797, -8.595, -10 +.451, -10.936, -11.805, -11.519, -10.802, -13.294, -13.487, -13.642, +-12.075, -11.978, -12.716, -12.298, -12.532, -11.563, -12.246, -10.23 +2, -13.835, -14.574, -13.675, -13.667, -15.839, -16.600, -17.957, -18 +.613, -20.031, -12.904, -11.993, -10.918, -10.550, -11.319, -12.286, +-13.135, -12.169, -10.396, -9.393, -9.998, -9.339, -8.849, -7.90 +9, -6.677, -7.549, -11.220, -11.886, -12.043, -11.783, -13.252, -13 +.802, -13.011, -15.033, -12.456, -12.616, -11.284, -11.206, -13.346, +-14.755, -15.578, -15.119, -16.813, -10.226, -8.913, -8.514, -8.03 +0, -7.892, -6.509, -6.140, -5.581, -4.860, -4.280, -3.934, -8 +.686, -8.313, -9.148, -8.598, -8.459, -7.371, -8.392, -7.521, +-10.461, -11.246, -11.497, -11.631, -12.556, -13.385, -12.310, -11.49 +0, -11.666, -10.387, -10.096, -12.599, -13.930, -14.829, -15.660, -14 +.717); @BMzcord = ( -11.272, -11.499, -12.335, -12.114, -10.170, -9.308, -7 +.671, -6.966, -13.307, -14.145, -13.447, -13.882, -15.184, -14.461, +-13.654, -11.352, -11.736, -12.500, -12.407, -10.500, -9.622, -9.75 +5, -13.241, -14.011, -13.136, -13.408, -14.903, -15.991, -16.229, -16 +.622, -12.094, -11.190, -9.746, -9.448, -11.440, -11.070, -12.949, + -8.840, -7.411, -7.074, -6.199, -6.554, -6.233, -5.196, -5.63 +0, -7.746, -7.494, -7.804, -7.069, -8.366, -8.281, -8.920, -9 +.055, -9.478, -8.884, -9.228, -8.147, -7.798, -10.586, -11.759, +-11.716, -12.711, -7.647, -6.586, -5.331, -4.682, -6.290, -5.07 +9, -5.324, -4.806, -4.974, -3.803, -3.924, -2.971, -3.645, -2 +.257, -1.288, -2.135, -5.100, -5.309, -5.250, -4.727, -6.625, + -6.529, -7.770, -8.724, -7.760, -5.757, -5.673, -4.211, -3.82 +8, -6.380, -6.415, -7.449, -5.409, -7.485, -5.431, -6.480, -3 +.405, -2.000, -1.168, -0.347, -1.390, -1.967, 0.151, -1.574, + -1.364, -0.490, -1.042, -0.257, -0.095, -1.247, 0.420, -2.35 +8, -2.942, -3.385, -2.922, -4.139, -3.875, -5.113, -5.290, -5 +.920); #Array size for for loop $BMatoms = 122; ($LineVform, $LineUnitvector) = &Haxell($Xl1, $Yl1, $Zl1, $Xl2, $Yl2, +$Zl2); (*xo, *yo, *zo) = &rotator(\@BMxcord, \@BMycord, \@BMzcord, $BMatoms, +$LineUnitvector, $XlM, $YlM, $ZlM); ###################### #SUBROUTINES ###################### sub Haxell { ($Xl1, $Yl1, $Zl1, $Xl2, $Yl2, $Zl2) = @_; $Axx = $Xl1 - $Xl2; $Axy = $Yl1 - $Yl2; $Axz = $Zl1 - $Zl2; $Vform = V($Axx,$Axy,$Axz); $vector = sqrt($Axx**2 + $Axy**2 + $Axz**2); $Unitvector = 1/$vector * $Vform; return($Vform, $Unitvector); } sub rotator { use Math::Vector::Real; (*xcord, *ycord, *zcord, $BMatoms, $LineUnitvector, $XlM, $YlM, $ZlM) += @_; $angrad = 9.4; $transl = 0.4; my $coefl1; my $coefl2; my @Xco; my @Yco; my @Zco; my @Vector; my @scal; my @f; my @s; my @fx; my @fy; my @fz; my @sx; my @sy; my @sz; my @xo; my @yo; my @zo; $coefl1 = 1-cos($angrad); $coefl2 = sin($angrad); ($LUVx, $LUVy, $LUVz) = &VectorBreakdown($LineUnitvector); for (my $i = 0; $i < $BMatoms; $i++) { $Xco[$i] = $xcord[$i] - $XlM; $Yco[$i] = $ycord[$i] - $YlM; $Zco[$i] = $zcord[$i] - $ZlM; $Vector[$i] = V($Xco[$i], $Yco[$i], $Zco[$i]); $scal[$i] = $LineUnitvector * $Vector[$i]; $f[$i] = $scal[$i] * ($LineUnitvector - $Vector[$i]); $f[$i] = $coefl1 * $f[$i]; $s[$i] = $LineUnitvector x $Vector[$i]; $s[$i] = $coefl2 * $s[$i]; ($fx[$i], $fy[$i], $fz[$i]) = &VectorBreakdown($f[$i]); ($sx[$i], $sy[$i], $sz[$i]) = &VectorBreakdown($s[$i]); $xo[$i] = $xcord[$i] + $fx[$i] + $sx[$i] + ($transl * $LUVx); $yo[$i] = $ycord[$i] + $fy[$i] + $sy[$i] + ($transl * $LUVy); $zo[$i] = $zcord[$i] + $fz[$i] + $sz[$i] + ($transl * $LUVz); $xo[$i] = sprintf("%.3f", $xo[$i]); $yo[$i] = sprintf("%.3f", $yo[$i]); $zo[$i] = sprintf("%.3f", $zo[$i]); } return(\@xo, \@yo, \@zo); } sub VectorBreakdown { ($complete) = @_; my @personal = (); @personal = split(/,/, $complete); $personal[0] = substr($personal[0], 1); $personal[2] = substr($personal[2], 0, -1); return ($personal[0], $personal[1], $personal[2]); }


Comment on Re^2: Cartesian co-ordinate rotation around an Axis
Download Code
Re^3: Cartesian co-ordinate rotation around an Axis
by dHarry (Abbot) on Aug 09, 2011 at 09:14 UTC

    I have difficulty understanding your initial post as well as your clarifying post. If you want to rotate you typically need a Rotation matrix R. You represent the point you want to rotate by a vector v and perform the multiplication R.v. This is fairly straightforward. CPAN is your friend: Math::VectorReal contains an example of rotating a vector with a rotation matrix.

    HTH

    Harry

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://919281]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others meditating upon the Monastery: (3)
As of 2014-09-22 04:39 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    How do you remember the number of days in each month?











    Results (178 votes), past polls