Beefy Boxes and Bandwidth Generously Provided by pair Networks
Just another Perl shrine
 
PerlMonks  

Re^2: Cartesian co-ordinate rotation around an Axis

by fraizerangus (Sexton)
on Aug 08, 2011 at 16:34 UTC ( #919281=note: print w/ replies, xml ) Need Help??


in reply to Re: Cartesian co-ordinate rotation around an Axis
in thread Cartesian co-ordinate rotation around an Axis

Hi Sorry I was trying to simplify the code, here's the working example:

#XYZ Coordinates of point 1 on the axis $Xl1 = -3.902; $Yl1 = 9.353; $Zl1 = -1.556; #XYZ Coordinates of point 2 on the axis $Xl2 = -47.470; $Yl2 = -2.908; $Zl2 = -17.596; #XYZ Coordinates of a midpoint on the axis $XlM = -20.284; $YlM = 4.548; $ZlM = -7.261; #XYZ data for all the cartesian co-ordinates to be rotated @BMxcord = ( -18.731, -19.287, -20.545, -21.421, -19.594, -18.388, -18 +.784, -17.107, -20.681, -21.870, -23.239, -24.201, -21.604, -20.782, +-19.827, -29.918, -29.341, -30.384, -31.579, -28.853, -29.953, -27.73 +5, -29.939, -30.878, -31.833, -33.036, -30.088, -29.320, -29.582, -28 +.457, -31.275, -31.996, -31.636, -30.654, -31.599, -30.210, -31.741, +-32.428, -32.135, -30.851, -30.080, -33.281, -34.391, -35.291, -33.83 +4, -30.598, -29.385, -28.185, -27.196, -29.374, -28.083, -28.213, -26 +.851, -26.976, -28.281, -27.192, -27.020, -25.897, -27.447, -27.316, +-26.408, -28.108, -28.126, -28.039, -27.400, -26.592, -29.432, -29.51 +5, -28.622, -30.990, -27.788, -27.250, -25.745, -25.000, -27.931, -27 +.790, -27.786, -27.688, -25.280, -23.859, -23.145, -22.033, -23.597, +-24.127, -23.878, -23.247, -24.368, -23.758, -23.128, -22.938, -21.86 +4, -24.018, -23.448, -22.595, -23.733, -22.035, -23.167, -22.322, -23 +.984, -23.948, -22.987, -22.261, -25.376, -26.289, -25.329, -27.739, +-22.959, -22.088, -20.683, -19.718, -22.774, -22.821, -24.225, -20.53 +1, -19.203, -18.510, -17.411, -19.234, -19.923, -19.918, -20.834, -18 +.981); @BMycord = ( -0.135, -1.473, -1.396, -0.553, -2.172, -2.409, -3 +.016, -3.128, -2.300, -2.245, -2.337, -1.730, -3.351, -4.304, + -3.453, -5.632, -6.925, -7.735, -7.459, -7.732, -8.003, -6.95 +8, -8.747, -9.551, -10.352, -10.461, -10.510, -9.797, -8.595, -10 +.451, -10.936, -11.805, -11.519, -10.802, -13.294, -13.487, -13.642, +-12.075, -11.978, -12.716, -12.298, -12.532, -11.563, -12.246, -10.23 +2, -13.835, -14.574, -13.675, -13.667, -15.839, -16.600, -17.957, -18 +.613, -20.031, -12.904, -11.993, -10.918, -10.550, -11.319, -12.286, +-13.135, -12.169, -10.396, -9.393, -9.998, -9.339, -8.849, -7.90 +9, -6.677, -7.549, -11.220, -11.886, -12.043, -11.783, -13.252, -13 +.802, -13.011, -15.033, -12.456, -12.616, -11.284, -11.206, -13.346, +-14.755, -15.578, -15.119, -16.813, -10.226, -8.913, -8.514, -8.03 +0, -7.892, -6.509, -6.140, -5.581, -4.860, -4.280, -3.934, -8 +.686, -8.313, -9.148, -8.598, -8.459, -7.371, -8.392, -7.521, +-10.461, -11.246, -11.497, -11.631, -12.556, -13.385, -12.310, -11.49 +0, -11.666, -10.387, -10.096, -12.599, -13.930, -14.829, -15.660, -14 +.717); @BMzcord = ( -11.272, -11.499, -12.335, -12.114, -10.170, -9.308, -7 +.671, -6.966, -13.307, -14.145, -13.447, -13.882, -15.184, -14.461, +-13.654, -11.352, -11.736, -12.500, -12.407, -10.500, -9.622, -9.75 +5, -13.241, -14.011, -13.136, -13.408, -14.903, -15.991, -16.229, -16 +.622, -12.094, -11.190, -9.746, -9.448, -11.440, -11.070, -12.949, + -8.840, -7.411, -7.074, -6.199, -6.554, -6.233, -5.196, -5.63 +0, -7.746, -7.494, -7.804, -7.069, -8.366, -8.281, -8.920, -9 +.055, -9.478, -8.884, -9.228, -8.147, -7.798, -10.586, -11.759, +-11.716, -12.711, -7.647, -6.586, -5.331, -4.682, -6.290, -5.07 +9, -5.324, -4.806, -4.974, -3.803, -3.924, -2.971, -3.645, -2 +.257, -1.288, -2.135, -5.100, -5.309, -5.250, -4.727, -6.625, + -6.529, -7.770, -8.724, -7.760, -5.757, -5.673, -4.211, -3.82 +8, -6.380, -6.415, -7.449, -5.409, -7.485, -5.431, -6.480, -3 +.405, -2.000, -1.168, -0.347, -1.390, -1.967, 0.151, -1.574, + -1.364, -0.490, -1.042, -0.257, -0.095, -1.247, 0.420, -2.35 +8, -2.942, -3.385, -2.922, -4.139, -3.875, -5.113, -5.290, -5 +.920); #Array size for for loop $BMatoms = 122; ($LineVform, $LineUnitvector) = &Haxell($Xl1, $Yl1, $Zl1, $Xl2, $Yl2, +$Zl2); (*xo, *yo, *zo) = &rotator(\@BMxcord, \@BMycord, \@BMzcord, $BMatoms, +$LineUnitvector, $XlM, $YlM, $ZlM); ###################### #SUBROUTINES ###################### sub Haxell { ($Xl1, $Yl1, $Zl1, $Xl2, $Yl2, $Zl2) = @_; $Axx = $Xl1 - $Xl2; $Axy = $Yl1 - $Yl2; $Axz = $Zl1 - $Zl2; $Vform = V($Axx,$Axy,$Axz); $vector = sqrt($Axx**2 + $Axy**2 + $Axz**2); $Unitvector = 1/$vector * $Vform; return($Vform, $Unitvector); } sub rotator { use Math::Vector::Real; (*xcord, *ycord, *zcord, $BMatoms, $LineUnitvector, $XlM, $YlM, $ZlM) += @_; $angrad = 9.4; $transl = 0.4; my $coefl1; my $coefl2; my @Xco; my @Yco; my @Zco; my @Vector; my @scal; my @f; my @s; my @fx; my @fy; my @fz; my @sx; my @sy; my @sz; my @xo; my @yo; my @zo; $coefl1 = 1-cos($angrad); $coefl2 = sin($angrad); ($LUVx, $LUVy, $LUVz) = &VectorBreakdown($LineUnitvector); for (my $i = 0; $i < $BMatoms; $i++) { $Xco[$i] = $xcord[$i] - $XlM; $Yco[$i] = $ycord[$i] - $YlM; $Zco[$i] = $zcord[$i] - $ZlM; $Vector[$i] = V($Xco[$i], $Yco[$i], $Zco[$i]); $scal[$i] = $LineUnitvector * $Vector[$i]; $f[$i] = $scal[$i] * ($LineUnitvector - $Vector[$i]); $f[$i] = $coefl1 * $f[$i]; $s[$i] = $LineUnitvector x $Vector[$i]; $s[$i] = $coefl2 * $s[$i]; ($fx[$i], $fy[$i], $fz[$i]) = &VectorBreakdown($f[$i]); ($sx[$i], $sy[$i], $sz[$i]) = &VectorBreakdown($s[$i]); $xo[$i] = $xcord[$i] + $fx[$i] + $sx[$i] + ($transl * $LUVx); $yo[$i] = $ycord[$i] + $fy[$i] + $sy[$i] + ($transl * $LUVy); $zo[$i] = $zcord[$i] + $fz[$i] + $sz[$i] + ($transl * $LUVz); $xo[$i] = sprintf("%.3f", $xo[$i]); $yo[$i] = sprintf("%.3f", $yo[$i]); $zo[$i] = sprintf("%.3f", $zo[$i]); } return(\@xo, \@yo, \@zo); } sub VectorBreakdown { ($complete) = @_; my @personal = (); @personal = split(/,/, $complete); $personal[0] = substr($personal[0], 1); $personal[2] = substr($personal[2], 0, -1); return ($personal[0], $personal[1], $personal[2]); }


Comment on Re^2: Cartesian co-ordinate rotation around an Axis
Download Code
Re^3: Cartesian co-ordinate rotation around an Axis
by dHarry (Abbot) on Aug 09, 2011 at 09:14 UTC

    I have difficulty understanding your initial post as well as your clarifying post. If you want to rotate you typically need a Rotation matrix R. You represent the point you want to rotate by a vector v and perform the multiplication R.v. This is fairly straightforward. CPAN is your friend: Math::VectorReal contains an example of rotating a vector with a rotation matrix.

    HTH

    Harry

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://919281]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others meditating upon the Monastery: (9)
As of 2015-07-03 10:57 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    The top three priorities of my open tasks are (in descending order of likelihood to be worked on) ...









    Results (51 votes), past polls