Beefy Boxes and Bandwidth Generously Provided by pair Networks
Think about Loose Coupling
 
PerlMonks  

Re: Re: What A Wonderful World: Bitmasks!

by tachyon (Chancellor)
on Dec 08, 2002 at 17:44 UTC ( #218379=note: print w/ replies, xml ) Need Help??


in reply to Re: What A Wonderful World: Bitmasks!
in thread What A Wonderful World: Bitmasks!

Here is how it works and some example of how you use AND & OR | and XOR ^ with bit masks. AND is true is both bits AND-ED together are true, otherwise it is false. OR is true if either of the bits OR-ED together are true otherwise it is false. XOR (Exclusive OR )is true if only one of bits XOR-ED together is true. It is false if both bits are true or both bits are false. Although XOR might seem a little odd it has some particularly interesting properties.

print "Basic binary key bit numbers\n"; print "$_\t", dec_to_bin_text($_), "\n" for qw ( 0 1 2 4 8 16 32 64 12 +8 255 ); print "\nSubnet Mask binary\n"; print "$_\t", dec_to_bin_text($_), "\n" for qw ( 255 254 252 248 240 2 +24 192 128 0); print "\nWhat binary OR does - the | operator\n"; print do_or( 255, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print do_or( 0, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print "\nWhat binary AND does - the & operator\n"; print do_and( 255, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print do_and( 0, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print "\nWhat binary XOR does - the ^ operator\n"; print do_xor( 255, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print do_xor( 0, $_ ) for qw( 0 1 2 4 8 16 32 64 128 255 ); print "\nUsing OR to set a bit in a bit mask to true\n"; print do_or( 0, 64 ); print do_or( 128, 64 ); print do_or( 255, 64 ); print "\nUsing XOR and AND to set a bit in a bit mask for false\n"; print "We want to set the 64 bit 0100000 and use the 255 XOR 64\n"; print "Which is 10111111 = 191 as a mask to do this\n"; print do_and( 255, 255^64 ); print do_and( 0, 255^64 ); print "\nUsing AND to get the value of a bit in a bit mask ( res = zer +o if not set, >0 if set )\n"; print do_and( 0, 64); print do_and( 255, 64); print "\nThe interesting property of double XOR against a bit mask - b +it fliping\n"; print "This can be the basis or a simple encryption routine as in Acti +ve State Perl App\n"; print "\nExample 1\n"; print do_xor( 255, 10 ); print do_xor( 255, 245 ); print "\nExample 2\n"; print do_xor( 123, 10 ); print do_xor( 123, 113 ); print "\n\nThere you go!\n"; sub do_or { my ( $b1, $b2 ) = @_; my $res = $b1 | $b2; $b1_txt = dec_to_bin_text($b1); $b2_txt = dec_to_bin_text($b2); $res_txt = dec_to_bin_text($res); return " $b1_txt = $b1 $b2_txt = $b2 ---OR--- $res_txt = $res "; } sub do_xor { my ( $b1, $b2 ) = @_; my $res = $b1 ^ $b2; $b1_txt = dec_to_bin_text($b1); $b2_txt = dec_to_bin_text($b2); $res_txt = dec_to_bin_text($res); return " $b1_txt = $b1 $b2_txt = $b2 --XOR--- $res_txt = $res "; } sub do_and { my ( $b1, $b2 ) = @_; my $res = $b1 & $b2; $b1_txt = dec_to_bin_text($b1); $b2_txt = dec_to_bin_text($b2); $res_txt = dec_to_bin_text($res); return " $b1_txt = $b1 $b2_txt = $b2 --AND--- $res_txt = $res "; } sub dec_to_bin_text { my $dec = shift; my $bin_str = sprintf "%08b", $dec; return $bin_str; } __DATA__ Basic binary key bit numbers 0 00000000 1 00000001 2 00000010 4 00000100 8 00001000 16 00010000 32 00100000 64 01000000 128 10000000 255 11111111 Subnet Mask binary 255 11111111 254 11111110 252 11111100 248 11111000 240 11110000 224 11100000 192 11000000 128 10000000 0 00000000 What binary OR does - the | operator 11111111 = 255 00000000 = 0 ---OR--- 11111111 = 255 11111111 = 255 00000001 = 1 ---OR--- 11111111 = 255 11111111 = 255 00000010 = 2 ---OR--- 11111111 = 255 11111111 = 255 00000100 = 4 ---OR--- 11111111 = 255 11111111 = 255 00001000 = 8 ---OR--- 11111111 = 255 11111111 = 255 00010000 = 16 ---OR--- 11111111 = 255 11111111 = 255 00100000 = 32 ---OR--- 11111111 = 255 11111111 = 255 01000000 = 64 ---OR--- 11111111 = 255 11111111 = 255 10000000 = 128 ---OR--- 11111111 = 255 11111111 = 255 11111111 = 255 ---OR--- 11111111 = 255 00000000 = 0 00000000 = 0 ---OR--- 00000000 = 0 00000000 = 0 00000001 = 1 ---OR--- 00000001 = 1 00000000 = 0 00000010 = 2 ---OR--- 00000010 = 2 00000000 = 0 00000100 = 4 ---OR--- 00000100 = 4 00000000 = 0 00001000 = 8 ---OR--- 00001000 = 8 00000000 = 0 00010000 = 16 ---OR--- 00010000 = 16 00000000 = 0 00100000 = 32 ---OR--- 00100000 = 32 00000000 = 0 01000000 = 64 ---OR--- 01000000 = 64 00000000 = 0 10000000 = 128 ---OR--- 10000000 = 128 00000000 = 0 11111111 = 255 ---OR--- 11111111 = 255 What binary AND does - the & operator 11111111 = 255 00000000 = 0 --AND--- 00000000 = 0 11111111 = 255 00000001 = 1 --AND--- 00000001 = 1 11111111 = 255 00000010 = 2 --AND--- 00000010 = 2 11111111 = 255 00000100 = 4 --AND--- 00000100 = 4 11111111 = 255 00001000 = 8 --AND--- 00001000 = 8 11111111 = 255 00010000 = 16 --AND--- 00010000 = 16 11111111 = 255 00100000 = 32 --AND--- 00100000 = 32 11111111 = 255 01000000 = 64 --AND--- 01000000 = 64 11111111 = 255 10000000 = 128 --AND--- 10000000 = 128 11111111 = 255 11111111 = 255 --AND--- 11111111 = 255 00000000 = 0 00000000 = 0 --AND--- 00000000 = 0 00000000 = 0 00000001 = 1 --AND--- 00000000 = 0 00000000 = 0 00000010 = 2 --AND--- 00000000 = 0 00000000 = 0 00000100 = 4 --AND--- 00000000 = 0 00000000 = 0 00001000 = 8 --AND--- 00000000 = 0 00000000 = 0 00010000 = 16 --AND--- 00000000 = 0 00000000 = 0 00100000 = 32 --AND--- 00000000 = 0 00000000 = 0 01000000 = 64 --AND--- 00000000 = 0 00000000 = 0 10000000 = 128 --AND--- 00000000 = 0 00000000 = 0 11111111 = 255 --AND--- 00000000 = 0 What binary XOR does - the ^ operator 11111111 = 255 00000000 = 0 --XOR--- 11111111 = 255 11111111 = 255 00000001 = 1 --XOR--- 11111110 = 254 11111111 = 255 00000010 = 2 --XOR--- 11111101 = 253 11111111 = 255 00000100 = 4 --XOR--- 11111011 = 251 11111111 = 255 00001000 = 8 --XOR--- 11110111 = 247 11111111 = 255 00010000 = 16 --XOR--- 11101111 = 239 11111111 = 255 00100000 = 32 --XOR--- 11011111 = 223 11111111 = 255 01000000 = 64 --XOR--- 10111111 = 191 11111111 = 255 10000000 = 128 --XOR--- 01111111 = 127 11111111 = 255 11111111 = 255 --XOR--- 00000000 = 0 00000000 = 0 00000000 = 0 --XOR--- 00000000 = 0 00000000 = 0 00000001 = 1 --XOR--- 00000001 = 1 00000000 = 0 00000010 = 2 --XOR--- 00000010 = 2 00000000 = 0 00000100 = 4 --XOR--- 00000100 = 4 00000000 = 0 00001000 = 8 --XOR--- 00001000 = 8 00000000 = 0 00010000 = 16 --XOR--- 00010000 = 16 00000000 = 0 00100000 = 32 --XOR--- 00100000 = 32 00000000 = 0 01000000 = 64 --XOR--- 01000000 = 64 00000000 = 0 10000000 = 128 --XOR--- 10000000 = 128 00000000 = 0 11111111 = 255 --XOR--- 11111111 = 255 Using OR to set a bit in a bit mask to true 00000000 = 0 01000000 = 64 ---OR--- 01000000 = 64 10000000 = 128 01000000 = 64 ---OR--- 11000000 = 192 11111111 = 255 01000000 = 64 ---OR--- 11111111 = 255 Using XOR and AND to set a bit in a bit mask for false We want to set the 64 bit 0100000 and use the 255 XOR 64 Which is 10111111 = 191 as a mask to do this 11111111 = 255 10111111 = 191 --AND--- 10111111 = 191 00000000 = 0 10111111 = 191 --AND--- 00000000 = 0 Using AND to get the value of a bit in a bit mask ( res = zero if not +set, >0 if set ) 00000000 = 0 01000000 = 64 --AND--- 00000000 = 0 11111111 = 255 01000000 = 64 --AND--- 01000000 = 64 The interesting property of double XOR against a bit mask - bit flipin +g This can be the basis or a simple encryption routine as in Active Stat +e Perl App Example 1 11111111 = 255 00001010 = 10 --XOR--- 11110101 = 245 11111111 = 255 11110101 = 245 --XOR--- 00001010 = 10 Example 2 01111011 = 123 00001010 = 10 --XOR--- 01110001 = 113 01111011 = 123 01110001 = 113 --XOR--- 00001010 = 10 There you go!

cheers

tachyon

s&&rsenoyhcatreve&&&s&n.+t&"$'$`$\"$\&"&ee&&y&srve&&d&&print


Comment on Re: Re: What A Wonderful World: Bitmasks!
Download Code
Re: Re: Re: What A Wonderful World: Bitmasks!
by demerphq (Chancellor) on Dec 08, 2002 at 23:20 UTC
    Excellent node. I completely forgot to cover the operators.

    One thing id like to add however is that your comment about XOR being the basis of simple encryption, while being true, should not be emulated. XOR based cyphers are particularly vulnerable to being cracked. Also, the most common use of XOR is right in front of everybodys eyes: graphics.

    --- demerphq
    my friends call me, usually because I'm late....

      I suppose you don't like rot13 either ;-)

      cheers

      tachyon

      s&&rsenoyhcatreve&&&s&n.+t&"$'$`$\"$\&"&ee&&y&srve&&d&&print

      I think XOR is still at the base of modern symetric (i.e. private key) encryption algorithms. They create a stream which is XORed with the plaintext. The difference between the simple XOR encryption of which you are surely thinking and these better algorithm is that the stream these new algorithms create is not periodic.

      If I remember correctly, one end of an HTTPS connection uses public key encryption to distribute a private key to its peer, and then they switch to symetric (private key) encryption. It does this because symetric is faster, and XOR surely plays a part in that.

      Feel free to correct me. This subject is far from fresh in my mind.

Re: Re: Re: What A Wonderful World: Bitmasks!
by sauoq (Abbot) on Dec 09, 2002 at 05:15 UTC

    Good node but woefully incomplete! How could you forget bitwise negation? It's really rather useful with bitmasks. For instance, $flags &= ~$foo_flag is a common idiom for flipping a bit off.

    I'll pick a nit while I'm at it. Throughout your node you refer to "binary AND", "binary OR", and "binary XOR". Strictly speaking, you mean "bitwise" rather than "binary." A binary operator is an operator that takes two operands. Both logical and bitwise AND are binary operators. For contrast, consider unary operators such as numerical, logical, and bitwise negation which take one operand as well as the trinary operator (?:) which takes three.

    Just the same, ++ for the otherwise thorough explanation.

    -sauoq
    "My two cents aren't worth a dime.";
    

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://218379]
help
Chatterbox?
and the web crawler heard nothing...

How do I use this? | Other CB clients
Other Users?
Others perusing the Monastery: (8)
As of 2014-12-28 20:05 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    Is guessing a good strategy for surviving in the IT business?





    Results (182 votes), past polls