Beefy Boxes and Bandwidth Generously Provided by pair Networks
Don't ask to ask, just ask
 
PerlMonks  

Re^2: A bad shuffle

by tlm (Prior)
on Mar 24, 2005 at 00:45 UTC ( #441930=note: print w/replies, xml ) Need Help??


in reply to Re: A bad shuffle
in thread A bad shuffle

NN-1/(N-1)! is not an integer for any integer N > 2, so it is not the case that N! | NN, except for N=1 and N=2.

the lowliest monk

Update: Here's a proof of the assertion made above. I'm sure there are better proofs of it, but this is the best I could come up with.

Assume that N > 2, and let p be the largest prime in the prime factorization of N. There are three cases to consider. Suppose first that p is 2. Then, by assumption, N is a power of 2 greater than or equal to 4. Therefore, 3 is a factor of N!, and consequently N! does not divide NN. Next, suppose that p > 2. If N = pk for some nonnegative integer k, then N is odd and not divisible by N! whose prime factorization includes 2. This leaves the case in which p > 2, and is not the sole prime factor of N. In this case N >= 2 p. By Bertrand's postulate there exists a prime q such that p < q < 2 p <= N. Therefore, there is a factor of N!, namely q, that does not divide Ns, for any positive integer s. Therefore, N! does not divide NN, for all N > 2.

Log In?
Username:
Password:

What's my password?
Create A New User
Node Status?
node history
Node Type: note [id://441930]
help
Chatterbox?
[karlgoethebier]: Lady_Aleena: "Studying the sources is the way to go" (Dr Wisenheimer) ;-)
[Lady_Aleena]: karlgoethebier, when I don't know what I am looking at, it makes it hard to figure things out.

How do I use this? | Other CB clients
Other Users?
Others chanting in the Monastery: (5)
As of 2017-06-26 09:10 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?
    How many monitors do you use while coding?















    Results (575 votes). Check out past polls.