sourcecode Juerd <code> package Math::MagicSquare::Generator; use strict; use Carp; use vars qw(\$VERSION); \$VERSION = '0.01'; sub _sum { my \$sum = 0; \$sum += \$_ for @_; return \$sum } sub new { my (\$class, %opt) = @_; \$opt{size} ||= 5; \$opt{start} ||= 1; \$opt{step} ||= 1; croak "Size needs to be a positive, odd integer" unless \$opt{size} > 0 and \$opt{size} % 2 and \$opt{size} == int(\$opt{size}); my \$self = [ map { [ (undef) x \$opt{size} ] } 1..\$opt{size} ]; my \$value = \$opt{start}; my \$halv = int(@\$self / 2); for my \$start_x (-\$halv..\$halv) { my \$x = \$start_x - 1; my \$y = \$x + @\$self + 1; for (1 .. @\$self) { \$x = \$x - @\$self if ++\$x > \$#\$self; \$y = \$y - @\$self if --\$y > \$#\$self; \$self->[\$y][\$x] = \$value; \$value += \$opt{step}; } } return bless \$self, \$class; } sub hflip { my (\$self) = @_; my \$clone; push @\$clone, [ reverse @\$_ ] for @\$self; return bless \$clone, ref \$self; } sub vflip { my (\$self) = @_; my \$clone; push @\$clone, [ @\$_ ] for reverse @\$self; return bless \$clone, ref \$self; } sub sum { my (\$self) = @_; return _sum( @{ \$self-> } ); } sub check { my (\$self) = @_; my \$sum = \$self->sum; # Horizontals for (@\$self[1..\$#\$self]) { return undef if @\$_ > @\$self; # undef if not square return undef if _sum(@\$_) != \$sum; } # Verticals for my \$x (0..\$#\$self) { return undef if _sum(map \$self->[\$_][\$x], 0..\$#\$self) != \$sum; } # Diagonals return undef if _sum(map \$self->[\$_][\$_], 0..\$#\$self) != \$sum; return undef if _sum(map \$self->[\$#\$self - \$_][\$_], 0..\$#\$self) != \$sum; # Duplicates my %seen; \$seen{\$_}++ for map @\$_, @\$self; return undef if _sum(values %seen) != keys %seen; # Passed all tests! return \$sum; } sub as_string { my (\$self) = @_; my \$max = 0; length > \$max and \$max = length for map @\$_, @\$self; return map { join(' ', map {' 'x(\$max - length) . \$_} @\$_) . "\n" } @\$self; } sub as_html { my (\$self) = @_; return "<table>\n" . join("\n", map { '<tr><td>' . join('</td><td>', @\$_) . '</td></tr>' } @\$self) . "\n</table>\n"; } sub as_csv { my (\$self) = @_; return join("\n", map { join ',', @\$_ } @\$self) . "\n"; } 1; __END__ =head1 NAME Math::MagicSquare::Generator - Magic Square Generator =head1 SYNOPSIS use Math::MagicSquare::Generator my \$square = Math::MagicSquare::Generator->new(size => 5, step => 3, start=> 6); for (\$square, \$square->vflip, \$square->hflip) { print \$_->as_string; print "-----\n"; } \$square-> = -15; # Break magic :) print \$square->check ? "Magic square\n" : "Just a square\n"; print '<html><body>'; print Math::MagicSquare::Generator->new->hflip->vflip->as_html; print '</body></html>'; =head1 DESCRIPTION This module creates magic squares. A magic square is a square in which all numbers are different and the sums of all rows, all columns and the two diagonals are equal. Math::MagicSquare::Generator cannot create panmagic squares, or squares that have an even size. (A panmagic square is magic square where the "wrapped" diagonals are also equal.) =head1 EXAMPLE 3 16 9 22 15 This square is the output of 20 8 21 14 2 print Math::MagicSquare::Generator->new->as_string; 7 25 13 1 19 24 12 5 18 6 11 4 17 10 23 The sums of the rows are 65. The sums of the columns are 65. The sums of the diagonals are 65. =head1 METHODS =over 10 =item new The constructor that generates the square immediately. It creates an object using the given named arguments. Valid arguments are C<size>, C<step> and C<start>. C<size> has to be positive, odd and integer. =item check A checker - returns the common sum if the square is magic, or undef if it's not. Because the sum can never be 0, you can use this as a boolean value. (Well, the sum in a 1x1 square can be 0, if the single number is 0.) You can use this method to check if the square has been tampered with. =item sum Returns the common sum of the rows, columns and diagonals. =item vflip, hflip These methods return a vertically or horizontally flipped clone of the square. The clone is a Math::MagicSquare::Generator, so stacking these methods is possible. =item as_string, as_html, as_csv DWYM - return the square as a formatted string, piece of html or in CSV format. =back =head1 THIS MODULE AND Math::MagicSquare Math::MagicSquare is a module that checks if a square is magical. It takes a list in its C<new> method, so you'll have to dereference the generated square: use Math::MagicSquare; use Math::MagicSquare::Generator; my \$square = Math::MagicSquare::Generator->new; print Math::MagicSquare->new( @\$square )->check, "\n"; # 2 Its C<check> will always return 2 for squares generated using this module (or 3 if it's a 1x1 square. =head1 KNOWN BUGS None yet. =head1 AUTHOR Juerd <juerd@juerd.nl> =cut </code> This module creates magic squares. A magic square is a square in which all numbers are differet and the sums of all rows, all columns and the two diagonals are equal. <br><br>(To be uploaded to CPAN soon) Fun stuff Juerd