Beefy Boxes and Bandwidth Generously Provided by pair Networks
Do you know where your variables are?
 
PerlMonks  

perlman:lib:Config:2

by root (Monk)
on Dec 23, 1999 at 02:50 UTC ( [id://1313]=perlman: print w/replies, xml ) Need Help??

lib

Current Perl documentation can be found at perldoc.perl.org.

Here is our local, out-dated (pre-5.6) version:

d_setregid

From d_setregid.U:

This variable conditionally defines HAS_SETREGID if setregid() is available to change the real and effective gid of the current process.

d_setresgid

From d_setregid.U:

This variable conditionally defines HAS_SETRESGID if setresgid() is available to change the real, effective and saved gid of the current process.

d_setresuid

From d_setreuid.U:

This variable conditionally defines HAS_SETREUID if setresuid() is available to change the real, effective and saved uid of the current process.

d_setreuid

From d_setreuid.U:

This variable conditionally defines HAS_SETREUID if setreuid() is available to change the real and effective uid of the current process.

d_setrgid

From d_setrgid.U:

This variable conditionally defines the HAS_SETRGID symbol, which indicates to the C program that the setrgid() routine is available to change the real gid of the current program.

d_setruid

From d_setruid.U:

This variable conditionally defines the HAS_SETRUID symbol, which indicates to the C program that the setruid() routine is available to change the real uid of the current program.

d_setsent

From d_setsent.U:

This variable conditionally defines HAS_SETSERVENT if setservent() is available.

d_setsid

From d_setsid.U:

This variable conditionally defines HAS_SETSID if setsid() is available to set the process group ID.

d_setvbuf

From d_setvbuf.U:

This variable conditionally defines the HAS_SETVBUF symbol, which indicates to the C program that the setvbuf() routine is available to change buffering on an open stdio stream.

d_sfio

From d_sfio.U:

This variable conditionally defines the USE_SFIO symbol, and indicates whether sfio is available (and should be used).

d_shm

From d_shm.U:

This variable conditionally defines the HAS_SHM symbol, which indicates that the entire shm*(2) library is present.

d_shmat

From d_shmat.U:

This variable conditionally defines the HAS_SHMAT symbol, which indicates to the C program that the shmat() routine is available.

d_shmatprototype

From d_shmat.U:

This variable conditionally defines the HAS_SHMAT_PROTOTYPE symbol, which indicates that sys/shm.h has a prototype for shmat.

d_shmctl

From d_shmctl.U:

This variable conditionally defines the HAS_SHMCTL symbol, which indicates to the C program that the shmctl() routine is available.

d_shmdt

From d_shmdt.U:

This variable conditionally defines the HAS_SHMDT symbol, which indicates to the C program that the shmdt() routine is available.

d_shmget

From d_shmget.U:

This variable conditionally defines the HAS_SHMGET symbol, which indicates to the C program that the shmget() routine is available.

d_sigaction

From d_sigaction.U:

This variable conditionally defines the HAS_SIGACTION symbol, which indicates that the Vr4 sigaction() routine is available.

d_sigsetjmp

From d_sigsetjmp.U:

This variable conditionally defines the HAS_SIGSETJMP symbol, which indicates that the sigsetjmp() routine is available to call setjmp() and optionally save the process's signal mask.

d_socket

From d_socket.U:

This variable conditionally defines HAS_SOCKET, which indicates that the BSD socket interface is supported.

d_sockpair

From d_socket.U:

This variable conditionally defines the HAS_SOCKETPAIR symbol, which indicates that the BSD socketpair() is supported.

d_statblks

From d_statblks.U:

This variable conditionally defines USE_STAT_BLOCKS if this system has a stat structure declaring st_blksize and st_blocks.

d_stdio_cnt_lval

From d_stdstdio.U:

This variable conditionally defines STDIO_CNT_LVALUE if the FILE_cnt macro can be used as an lvalue.

d_stdio_ptr_lval

From d_stdstdio.U:

This variable conditionally defines STDIO_PTR_LVALUE if the FILE_ptr macro can be used as an lvalue.

d_stdiobase

From d_stdstdio.U:

This variable conditionally defines USE_STDIO_BASE if this system has a FILE structure declaring a usable _base field (or equivalent) in stdio.h.

d_stdstdio

From d_stdstdio.U:

This variable conditionally defines USE_STDIO_PTR if this system has a FILE structure declaring usable _ptr and _cnt fields (or equivalent) in stdio.h.

d_strchr

From d_strchr.U:

This variable conditionally defines HAS_STRCHR if strchr() and strrchr() are available for string searching.

d_strcoll

From d_strcoll.U:

This variable conditionally defines HAS_STRCOLL if strcoll() is available to compare strings using collating information.

d_strctcpy

From d_strctcpy.U:

This variable conditionally defines the USE_STRUCT_COPY symbol, which indicates to the C program that this C compiler knows how to copy structures.

d_strerrm

From d_strerror.U:

This variable holds what Strerrr is defined as to translate an error code condition into an error message string. It could be strerror or a more complex macro emulating strrror with sys_errlist[], or the unknown string when both strerror and sys_errlist are missing.

d_strerror

From d_strerror.U:

This variable conditionally defines HAS_STRERROR if strerror() is available to translate error numbers to strings.

d_strtod

From d_strtod.U:

This variable conditionally defines the HAS_STRTOD symbol, which indicates to the C program that the strtod() routine is available to provide better numeric string conversion than atof().

d_strtol

From d_strtol.U:

This variable conditionally defines the HAS_STRTOL symbol, which indicates to the C program that the strtol() routine is available to provide better numeric string conversion than atoi() and friends.

d_strtoul

From d_strtoul.U:

This variable conditionally defines the HAS_STRTOUL symbol, which indicates to the C program that the strtoul() routine is available to provide conversion of strings to unsigned long.

d_strxfrm

From d_strxfrm.U:

This variable conditionally defines HAS_STRXFRM if strxfrm() is available to transform strings.

d_suidsafe

From d_dosuid.U:

This variable conditionally defines SETUID_SCRIPTS_ARE_SECURE_NOW if setuid scripts can be secure. This test looks in /dev/fd/.

d_symlink

From d_symlink.U:

This variable conditionally defines the HAS_SYMLINK symbol, which indicates to the C program that the symlink() routine is available to create symbolic links.

d_syscall

From d_syscall.U:

This variable conditionally defines HAS_SYSCALL if syscall() is available call arbitrary system calls.

d_sysconf

From d_sysconf.U:

This variable conditionally defines the HAS_SYSCONF symbol, which indicates to the C program that the sysconf() routine is available to determine system related limits and options.

d_sysernlst

From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRNOLIST if sys_errnolist[] is available to translate error numbers to the symbolic name.

d_syserrlst

From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRLIST if sys_errlist[] is available to translate error numbers to strings.

d_system

From d_system.U:

This variable conditionally defines HAS_SYSTEM if system() is available to issue a shell command.

d_tcgetpgrp

From d_tcgtpgrp.U:

This variable conditionally defines the HAS_TCGETPGRP symbol, which indicates to the C program that the tcgetpgrp() routine is available. to get foreground process group ID.

d_tcsetpgrp

From d_tcstpgrp.U:

This variable conditionally defines the HAS_TCSETPGRP symbol, which indicates to the C program that the tcsetpgrp() routine is available to set foreground process group ID.

d_telldir

From d_readdir.U:

This variable conditionally defines HAS_TELLDIR if telldir() is available.

d_time

From d_time.U:

This variable conditionally defines the HAS_TIME symbol, which indicates that the time() routine exists. The time() routine is normaly provided on UNIX systems.

d_times

From d_times.U:

This variable conditionally defines the HAS_TIMES symbol, which indicates that the times() routine exists. The times() routine is normaly provided on UNIX systems. You may have to include <sys/times.h>.

d_truncate

From d_truncate.U:

This variable conditionally defines HAS_TRUNCATE if truncate() is available to truncate files.

d_tzname

From d_tzname.U:

This variable conditionally defines HAS_TZNAME if tzname[] is available to access timezone names.

d_umask

From d_umask.U:

This variable conditionally defines the HAS_UMASK symbol, which indicates to the C program that the umask() routine is available. to set and get the value of the file creation mask.

d_uname

From d_gethname.U:

This variable conditionally defines the HAS_UNAME symbol, which indicates to the C program that the uname() routine may be used to derive the host name.

d_union_semun

From d_union_senum.U:

This variable conditionally defines HAS_UNION_SEMUN if the union semun is defined by including <sys/sem.h>.

d_vfork

From d_vfork.U:

This variable conditionally defines the HAS_VFORK symbol, which indicates the vfork() routine is available.

d_void_closedir

From d_closedir.U:

This variable conditionally defines VOID_CLOSEDIR if closedir() does not return a value.

d_voidsig

From d_voidsig.U:

This variable conditionally defines VOIDSIG if this system declares ``void (*signal(...))()'' in signal.h. The old way was to declare it as ``int (*signal(...))()''.

d_voidtty

From i_sysioctl.U:

This variable conditionally defines USE_IOCNOTTY to indicate that the ioctl() call with TIOCNOTTY should be used to void tty association. Otherwise (on USG probably), it is enough to close the standard file decriptors and do a setpgrp().

d_volatile

From d_volatile.U:

This variable conditionally defines the HASVOLATILE symbol, which indicates to the C program that this C compiler knows about the volatile declaration.

d_vprintf

From d_vprintf.U:

This variable conditionally defines the HAS_VPRINTF symbol, which indicates to the C program that the vprintf() routine is available to printf with a pointer to an argument list.

d_wait4

From d_wait4.U:

This variable conditionally defines the HAS_WAIT4 symbol, which indicates the wait4() routine is available.

d_waitpid

From d_waitpid.U:

This variable conditionally defines HAS_WAITPID if waitpid() is available to wait for child process.

d_wcstombs

From d_wcstombs.U:

This variable conditionally defines the HAS_WCSTOMBS symbol, which indicates to the C program that the wcstombs() routine is available to convert wide character strings to multibyte strings.

d_wctomb

From d_wctomb.U:

This variable conditionally defines the HAS_WCTOMB symbol, which indicates to the C program that the wctomb() routine is available to convert a wide character to a multibyte.

d_xenix

From Guess.U:

This variable conditionally defines the symbol XENIX, which alerts the C program that it runs under Xenix.

date

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the date program. After Configure runs, the value is reset to a plain date and is not useful.

db_hashtype

From i_db.U:

This variable contains the type of the hash structure element in the <db.h> header file. In older versions of DB, it was int, while in newer ones it is u_int32_t.

db_prefixtype

From i_db.U:

This variable contains the type of the prefix structure element in the <db.h> header file. In older versions of DB, it was int, while in newer ones it is size_t.

direntrytype

From i_dirent.U:

This symbol is set to struct direct or struct dirent depending on whether dirent is available or not. You should use this pseudo type to portably declare your directory entries.

dlext

From dlext.U:

This variable contains the extension that is to be used for the dynamically loaded modules that perl generaties.

dlsrc

From dlsrc.U:

This variable contains the name of the dynamic loading file that will be used with the package.

doublesize

From doublesize.U:

This variable contains the value of the DOUBLESIZE symbol, which indicates to the C program how many bytes there are in a double.

dynamic_ext

From Extensions.U:

This variable holds a list of perlguts#item_XS extension files we want to link dynamically into the package. It is used by Makefile.


e

eagain

From nblock_io.U:

This variable bears the symbolic errno code set by read() when no data is present on the file and non-blocking I/O was enabled (otherwise, read() blocks naturally).

ebcdic

From ebcdic.U:

This variable conditionally defines EBCDIC if this system uses EBCDIC encoding. Among other things, this means that the character ranges are not contiguous. See trnl.U

echo

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the echo program. After Configure runs, the value is reset to a plain echo and is not useful.

egrep

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the egrep program. After Configure runs, the value is reset to a plain egrep and is not useful.

emacs

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

eunicefix

From Init.U:

When running under Eunice this variable contains a command which will convert a shell script to the proper form of text file for it to be executable by the shell. On other systems it is a no-op.

exe_ext

From Unix.U:

This is an old synonym for _exe.

expr

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the expr program. After Configure runs, the value is reset to a plain expr and is not useful.

extensions

From Extensions.U:

This variable holds a list of all extension files (both perlguts#item_XS and non-xs linked into the package. It is propagated to Config.pm and is typically used to test whether a particular extesion is available.


f

find

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the find program. After Configure runs, the value is reset to a plain find and is not useful.

firstmakefile

From Unix.U:

This variable defines the first file searched by make. On unix, it is makefile (then Makefile). On case-insensitive systems, it might be something else. This is only used to deal with convoluted make depend tricks.

flex

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

fpostype

From fpostype.U:

This variable defines Fpos_t to be something like fpost_t, long, uint, or whatever type is used to declare file positions in libc.

freetype

From mallocsrc.U:

This variable contains the return type of free(). It is usually void, but occasionally int.

full_csh

From d_csh.U:

This variable contains the full pathname to csh, whether or not the user has specified portability. This is only used in the compiled C program, and we assume that all systems which can share this executable will have the same full pathname to csh.

full_sed

From Loc_sed.U:

This variable contains the full pathname to sed, whether or not the user has specified portability. This is only used in the compiled C program, and we assume that all systems which can share this executable will have the same full pathname to sed.


g

gccversion

From cc.U:

If GNU cc (gcc) is used, this variable holds 1 or 2 to indicate whether the compiler is version 1 or 2. This is used in setting some of the default cflags. It is set to '' if not gcc.

gidtype

From gidtype.U:

This variable defines Gid_t to be something like gid_t, int, ushort, or whatever type is used to declare the return type of getgid(). Typically, it is the type of group ids in the kernel.

grep

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the grep program. After Configure runs, the value is reset to a plain grep and is not useful.

groupcat

From nis.U:

This variable contains a command that produces the text of the /etc/group file. This is normally ``cat /etc/group'', but can be ``ypcat group'' when NIS is used.

groupstype

From groupstype.U:

This variable defines Groups_t to be something like gid_t, int, ushort, or whatever type is used for the second argument to getgroups() and setgroups(). Usually, this is the same as gidtype (gid_t), but sometimes it isn't.

gzip

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the gzip program. After Configure runs, the value is reset to a plain gzip and is not useful.


h

h_fcntl

From h_fcntl.U:

This is variable gets set in various places to tell i_fcntl that <fcntl.h> should be included.

h_sysfile

From h_sysfile.U:

This is variable gets set in various places to tell i_sys_file that <sys/file.h> should be included.

hint

From Oldconfig.U:

Gives the type of hints used for previous answers. May be one of default, recommended or previous.

hostcat

From nis.U:

This variable contains a command that produces the text of the /etc/hosts file. This is normally ``cat /etc/hosts'', but can be ``ypcat hosts'' when NIS is used.

huge

From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program running with a huge memory model. If the huge model is not supported, contains the flag to produce large model programs. It is up to the Makefile to use this.


i

i_arpainet

From i_arpainet.U:

This variable conditionally defines the I_ARPA_INET symbol, and indicates whether a C program should include <arpa/inet.h>.

i_bsdioctl

From i_sysioctl.U:

This variable conditionally defines the I_SYS_BSDIOCTL symbol, which indicates to the C program that <sys/bsdioctl.h> exists and should be included.

i_db

From i_db.U:

This variable conditionally defines the I_DB symbol, and indicates whether a C program may include Berkeley's DB include file <db.h>.

i_dbm

From i_dbm.U:

This variable conditionally defines the I_DBM symbol, which indicates to the C program that <dbm.h> exists and should be included.

i_dirent

From i_dirent.U:

This variable conditionally defines I_DIRENT, which indicates to the C program that it should include <dirent.h>.

i_dld

From i_dld.U:

This variable conditionally defines the I_DLD symbol, which indicates to the C program that <dld.h> (GNU dynamic loading) exists and should be included.

i_dlfcn

From i_dlfcn.U:

This variable conditionally defines the I_DLFCN symbol, which indicates to the C program that <dlfcn.h> exists and should be included.

i_fcntl

From i_fcntl.U:

This variable controls the value of I_FCNTL (which tells the C program to include <fcntl.h>).

i_float

From i_float.U:

This variable conditionally defines the I_FLOAT symbol, and indicates whether a C program may include <float.h> to get symbols like DBL_MAX or DBL_MIN, i.e. machine dependent floating point values.

i_gdbm

From i_gdbm.U:

This variable conditionally defines the I_GDBM symbol, which indicates to the C program that <gdbm.h> exists and should be included.

i_grp

From i_grp.U:

This variable conditionally defines the I_GRP symbol, and indicates whether a C program should include <grp.h>.

i_limits

From i_limits.U:

This variable conditionally defines the I_LIMITS symbol, and indicates whether a C program may include <limits.h> to get symbols like WORD_BIT and friends.

i_locale

From i_locale.U:

This variable conditionally defines the I_LOCALE symbol, and indicates whether a C program should include <locale.h>.

i_malloc

From i_malloc.U:

This variable conditionally defines the I_MALLOC symbol, and indicates whether a C program should include <malloc.h>.

i_math

From i_math.U:

This variable conditionally defines the I_MATH symbol, and indicates whether a C program may include <math.h>.

i_memory

From i_memory.U:

This variable conditionally defines the I_MEMORY symbol, and indicates whether a C program should include <memory.h>.

i_ndbm

From i_ndbm.U:

This variable conditionally defines the I_NDBM symbol, which indicates to the C program that <ndbm.h> exists and should be included.

i_netdb

From i_netdb.U:

This variable conditionally defines the I_NETDB symbol, and indicates whether a C program should include <netdb.h>.

i_neterrno

From i_neterrno.U:

This variable conditionally defines the I_NET_ERRNO symbol, which indicates to the C program that <net/errno.h> exists and should be included.

i_niin

From i_niin.U:

This variable conditionally defines I_NETINET_IN, which indicates to the C program that it should include <netinet/in.h>. Otherwise, you may try <sys/in.h>.

i_pwd

From i_pwd.U:

This variable conditionally defines I_PWD, which indicates to the C program that it should include <pwd.h>.

i_rpcsvcdbm

From i_dbm.U:

This variable conditionally defines the I_RPCSVC_DBM symbol, which indicates to the C program that <rpcsvc/dbm.h> exists and should be included. Some System V systems might need this instead of <dbm.h>.

i_sfio

From i_sfio.U:

This variable conditionally defines the I_SFIO symbol, and indicates whether a C program should include <sfio.h>.

i_sgtty

From i_termio.U:

This variable conditionally defines the I_SGTTY symbol, which indicates to the C program that it should include <sgtty.h> rather than <termio.h>.

i_stdarg

From i_varhdr.U:

This variable conditionally defines the I_STDARG symbol, which indicates to the C program that <stdarg.h> exists and should be included.

i_stddef

From i_stddef.U:

This variable conditionally defines the I_STDDEF symbol, which indicates to the C program that <stddef.h> exists and should be included.

i_stdlib

From i_stdlib.U:

This variable conditionally defines the I_STDLIB symbol, which indicates to the C program that <stdlib.h> exists and should be included.

i_string

From i_string.U:

This variable conditionally defines the I_STRING symbol, which indicates that <string.h> should be included rather than <strings.h>.

i_sysdir

From i_sysdir.U:

This variable conditionally defines the I_SYS_DIR symbol, and indicates whether a C program should include <sys/dir.h>.

i_sysfile

From i_sysfile.U:

This variable conditionally defines the I_SYS_FILE symbol, and indicates whether a C program should include <sys/file.h> to get R_OK and friends.

i_sysfilio

From i_sysioctl.U:

This variable conditionally defines the I_SYS_FILIO symbol, which indicates to the C program that <sys/filio.h> exists and should be included in preference to <sys/ioctl.h>.

i_sysin

From i_niin.U:

This variable conditionally defines I_SYS_IN, which indicates to the C program that it should include <sys/in.h> instead of <netinet/in.h>.

i_sysioctl

From i_sysioctl.U:

This variable conditionally defines the I_SYS_IOCTL symbol, which indicates to the C program that <sys/ioctl.h> exists and should be included.

i_sysndir

From i_sysndir.U:

This variable conditionally defines the I_SYS_NDIR symbol, and indicates whether a C program should include <sys/ndir.h>.

i_sysparam

From i_sysparam.U:

This variable conditionally defines the I_SYS_PARAM symbol, and indicates whether a C program should include <sys/param.h>.

i_sysresrc

From i_sysresrc.U:

This variable conditionally defines the I_SYS_RESOURCE symbol, and indicates whether a C program should include <sys/resource.h>.

i_sysselct

From i_sysselct.U:

This variable conditionally defines I_SYS_SELECT, which indicates to the C program that it should include <sys/select.h> in order to get the definition of struct timeval.

i_syssockio

From i_sysioctl.U:

This variable conditionally defines I_SYS_SOCKIO to indicate to the C program that socket ioctl codes may be found in <sys/sockio.h> instead of <sys/ioctl.h>.

i_sysstat

From i_sysstat.U:

This variable conditionally defines the I_SYS_STAT symbol, and indicates whether a C program should include <sys/stat.h>.

i_systime

From i_time.U:

This variable conditionally defines I_SYS_TIME, which indicates to the C program that it should include <sys/time.h>.

i_systimek

From i_time.U:

This variable conditionally defines I_SYS_TIME_KERNEL, which indicates to the C program that it should include <sys/time.h> with KERNEL defined.

i_systimes

From i_systimes.U:

This variable conditionally defines the I_SYS_TIMES symbol, and indicates whether a C program should include <sys/times.h>.

i_systypes

From i_systypes.U:

This variable conditionally defines the I_SYS_TYPES symbol, and indicates whether a C program should include <sys/types.h>.

i_sysun

From i_sysun.U:

This variable conditionally defines I_SYS_UN, which indicates to the C program that it should include <sys/un.h> to get UNIX domain socket definitions.

i_syswait

From i_syswait.U:

This variable conditionally defines I_SYS_WAIT, which indicates to the C program that it should include <sys/wait.h>.

i_termio

From i_termio.U:

This variable conditionally defines the I_TERMIO symbol, which indicates to the C program that it should include <termio.h> rather than <sgtty.h>.

i_termios

From i_termio.U:

This variable conditionally defines the I_TERMIOS symbol, which indicates to the C program that the POSIX <termios.h> file is to be included.

i_time

From i_time.U:

This variable conditionally defines I_TIME, which indicates to the C program that it should include <time.h>.

i_unistd

From i_unistd.U:

This variable conditionally defines the I_UNISTD symbol, and indicates whether a C program should include <unistd.h>.

i_utime

From i_utime.U:

This variable conditionally defines the I_UTIME symbol, and indicates whether a C program should include <utime.h>.

i_values

From i_values.U:

This variable conditionally defines the I_VALUES symbol, and indicates whether a C program may include <values.h> to get symbols like MAXLONG and friends.

i_varargs

From i_varhdr.U:

This variable conditionally defines I_VARARGS, which indicates to the C program that it should include <varargs.h>.

i_varhdr

From i_varhdr.U:

Contains the name of the header to be included to get va_dcl definition. Typically one of varargs.h or stdarg.h.

i_vfork

From i_vfork.U:

This variable conditionally defines the I_VFORK symbol, and indicates whether a C program should include vfork.h.

incpath

From usrinc.U:

This variable must preceed the normal include path to get hte right one, as in $incpath/usr/include or $incpath/usr/lib. Value can be ``'' or /bsd43 on mips.

inews

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

installarchlib

From archlib.U:

This variable is really the same as archlibexp but may differ on those systems using AFS. For extra portability, only this variable should be used in makefiles.

installbin

From bin.U:

This variable is the same as binexp unless AFS is running in which case the user is explicitely prompted for it. This variable should always be used in your makefiles for maximum portability.

installman1dir

From man1dir.U:

This variable is really the same as man1direxp, unless you are using AFS in which case it points to the read/write location whereas man1direxp only points to the read-only access location. For extra portability, you should only use this variable within your makefiles.

installman3dir

From man3dir.U:

This variable is really the same as man3direxp, unless you are using AFS in which case it points to the read/write location whereas man3direxp only points to the read-only access location. For extra portability, you should only use this variable within your makefiles.

installprivlib

From privlib.U:

This variable is really the same as privlibexp but may differ on those systems using AFS. For extra portability, only this variable should be used in makefiles.

installscript

From scriptdir.U:

This variable is usually the same as scriptdirexp, unless you are on a system running AFS, in which case they may differ slightly. You should always use this variable within your makefiles for portability.

installsitearch

From sitearch.U:

This variable is really the same as sitearchexp but may differ on those systems using AFS. For extra portability, only this variable should be used in makefiles.

installsitelib

From sitelib.U:

This variable is really the same as sitelibexp but may differ on those systems using AFS. For extra portability, only this variable should be used in makefiles.

intsize

From intsize.U:

This variable contains the value of the INTSIZE symbol, which indicates to the C program how many bytes there are in an int.


k

known_extensions

From Extensions.U:

This variable holds a list of all perlguts#item_XS extensions included in the package.

ksh

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.


l

large

From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program running with a large memory model. It is up to the Makefile to use this.

ld

From dlsrc.U:

This variable indicates the program to be used to link libraries for dynamic loading. On some systems, it is ld. On ELF systems, it should be $cc. Mostly, we'll try to respect the hint file setting.

lddlflags

From dlsrc.U:

This variable contains any special flags that might need to be passed to $ld to create a shared library suitable for dynamic loading. It is up to the makefile to use it. For hpux, it should be -b. For sunos 4.1, it is empty.

ldflags

From ccflags.U:

This variable contains any additional C loader flags desired by the user. It is up to the Makefile to use this.

less

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the less program. After Configure runs, the value is reset to a plain less and is not useful.

lib_ext

From Unix.U:

This is an old synonym for _a.

libc

From libc.U:

This variable contains the location of the C library.

libperl

From libperl.U:

The perl executable is obtained by linking perlmain.c with libperl, any static extensions (usually just DynaLoader), and any other libraries needed on this system. libperl is usually libperl.a, but can also be libperl.so.xxx if the user wishes to build a perl executable with a shared library.

libpth

From libpth.U:

This variable holds the general path used to find libraries. It is intended to be used by other units.

libs

From libs.U:

This variable holds the additional libraries we want to use. It is up to the Makefile to deal with it.

libswanted

From Myinit.U:

This variable holds a list of all the libraries we want to search. The order is chosen to pick up the c library ahead of ucb or bsd libraries for SVR4.

line

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the line program. After Configure runs, the value is reset to a plain line and is not useful.

lint

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

lkflags

From ccflags.U:

This variable contains any additional C partial linker flags desired by the user. It is up to the Makefile to use this.

ln

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the ln program. After Configure runs, the value is reset to a plain ln and is not useful.

lns

From lns.U:

This variable holds the name of the command to make symbolic links (if they are supported). It can be used in the Makefile. It is either ln -s or ln

locincpth

From ccflags.U:

This variable contains a list of additional directories to be searched by the compiler. The appropriate -I directives will be added to ccflags. This is intended to simplify setting local directories from the Configure command line. It's not much, but it parallels the loclibpth stuff in libpth.U.

loclibpth

From libpth.U:

This variable holds the paths used to find local libraries. It is prepended to libpth, and is intended to be easily set from the command line.

longdblsize

From d_longdbl.U:

This variable contains the value of the LONG_DOUBLESIZE symbol, which indicates to the C program how many bytes there are in a long double, if this system supports long doubles.

longlongsize

From d_longlong.U:

This variable contains the value of the LONGLONGSIZE symbol, which indicates to the C program how many bytes there are in a long long, if this system supports long long.

longsize

From intsize.U:

This variable contains the value of the LONGSIZE symbol, which indicates to the C program how many bytes there are in a long.

lp

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

lpr

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

ls

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the ls program. After Configure runs, the value is reset to a plain ls and is not useful.

lseektype

From lseektype.U:

This variable defines lseektype to be something like off_t, long, or whatever type is used to declare lseek offset's type in the kernel (which also appears to be lseek's return type).


m

mail

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

mailx

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

make

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the make program. After Configure runs, the value is reset to a plain make and is not useful.

make_set_make

From make.U:

Some versions of make set the variable MAKE. Others do not. This variable contains the string to be included in Makefile.SH so that MAKE is set if needed, and not if not needed. Possible values are: make_set_make=# # If your make program handles this for you, make_set_make=MAKE=$make # if it doesn't. I used a comment character so that we can distinguish a set value (from a previous config.sh or Configure -D option) from an uncomputed value.

mallocobj

From mallocsrc.U:

This variable contains the name of the malloc.o that this package generates, if that malloc.o is preferred over the system malloc. Otherwise the value is null. This variable is intended for generating Makefiles. See mallocsrc.

mallocsrc

From mallocsrc.U:

This variable contains the name of the malloc.c that comes with the package, if that malloc.c is preferred over the system malloc. Otherwise the value is null. This variable is intended for generating Makefiles.

malloctype

From mallocsrc.U:

This variable contains the kind of ptr returned by malloc and realloc.

man1dir

From man1dir.U:

This variable contains the name of the directory in which manual source pages are to be put. It is the responsibility of the Makefile.SH to get the value of this into the proper command. You must be prepared to do the ~name expansion yourself.

man1direxp

From man1dir.U:

This variable is the same as the man1dir variable, but is filename expanded at configuration time, for convenient use in makefiles.

man1ext

From man1dir.U:

This variable contains the extension that the manual page should have: one of n, l, or 1. The Makefile must supply the .. See man1dir.

man3dir

From man3dir.U:

This variable contains the name of the directory in which manual source pages are to be put. It is the responsibility of the Makefile.SH to get the value of this into the proper command. You must be prepared to do the ~name expansion yourself.

man3direxp

From man3dir.U:

This variable is the same as the man3dir variable, but is filename expanded at configuration time, for convenient use in makefiles.

man3ext

From man3dir.U:

This variable contains the extension that the manual page should have: one of n, l, or 3. The Makefile must supply the .. See man3dir.

medium

From models.U:

This variable contains a flag which will tell the C compiler and loader to produce a program running with a medium memory model. If the medium model is not supported, contains the flag to produce large model programs. It is up to the Makefile to use this.

mips_type

From usrinc.U:

This variable holds the environment type for the mips system. Possible values are ``BSD 4.3'' and ``System V''.

mkdir

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the mkdir program. After Configure runs, the value is reset to a plain mkdir and is not useful.

models

From models.U:

This variable contains the list of memory models supported by this system. Possible component values are none, split, unsplit, small, medium, large, and huge. The component values are space separated.

modetype

From modetype.U:

This variable defines modetype to be something like mode_t, int, unsigned short, or whatever type is used to declare file modes for system calls.

more

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the more program. After Configure runs, the value is reset to a plain more and is not useful.

mv

From Loc.U:

This variable is defined but not used by Configure. The value is a plain '' and is not useful.

myarchname

From archname.U:

This variable holds the architecture name computed by Configure in a previous run. It is not intended to be perused by any user and should never be set in a hint file.

mydomain

From myhostname.U:

This variable contains the eventual value of the MYDOMAIN symbol, which is the domain of the host the program is going to run on. The domain must be appended to myhostname to form a complete host name. The dot comes with mydomain, and need not be supplied by the program.

myhostname

From myhostname.U:

This variable contains the eventual value of the MYHOSTNAME symbol, which is the name of the host the program is going to run on. The domain is not kept with hostname, but must be gotten from mydomain. The dot comes with mydomain, and need not be supplied by the program.

myuname

From Oldconfig.U:

The output of uname -a if available, otherwise the hostname. On Xenix, pseudo variables assignments in the output are stripped, thank you. The whole thing is then lower-cased.


n

n

From n.U:

This variable contains the -n flag if that is what causes the echo command to suppress newline. Otherwise it is null. Correct usage is

        $echo $n "prompt for a question: $c".
netdb_hlen_type

From netdbtype.U:

This variable holds the type used for the 2nd argument to gethostbyaddr(). Usually, this is int or size_t or unsigned. This is only useful if you have gethostbyaddr(), naturally.

netdb_host_type

From netdbtype.U:

This variable holds the type used for the 1st argument to gethostbyaddr(). Usually, this is char * or void *, possibly with or without a const prefix. This is only useful if you have gethostbyaddr(), naturally.

netdb_name_type

From netdbtype.U:

This variable holds the type used for the argument to gethostbyname(). Usually, this is char * or const char *. This is only useful if you have gethostbyname(), naturally.

netdb_net_type

From netdbtype.U:

This variable holds the type used for the 1st argument to getnetbyaddr(). Usually, this is int or long. This is only useful if you have getnetbyaddr(), naturally.

nm

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the nm program. After Configure runs, the value is reset to a plain nm and is not useful.

nm_opt

From usenm.U:

This variable holds the options that may be necessary for nm.

nm_so_opt

From usenm.U:

This variable holds the options that may be necessary for nm to work on a shared library but that can not be used on an archive library. Currently, this is only used by Linux, where nm --dynamic is *required* to get symbols from an ELF library which has been stripped, but nm --dynamic is *fatal* on an archive library. Maybe Linux should just always set usenm=false.

nonxs_ext

From Extensions.U:

This variable holds a list of all non-xs extensions included in the package. All of them will be built.

nroff

From Loc.U:

This variable is be used internally by Configure to determine the full pathname (if any) of the nroff program. After Configure runs, the value is reset to a plain nroff and is not useful.


Continue to the rest of this document

Log In?
Username:
Password:

What's my password?
Create A New User
Domain Nodelet?
Chatterbox?
and the web crawler heard nothing...

How do I use this?Last hourOther CB clients
Other Users?
Others cooling their heels in the Monastery: (4)
As of 2025-05-23 06:14 GMT
Sections?
Information?
Find Nodes?
Leftovers?
    Voting Booth?

    No recent polls found

    Notices?
    erzuuliAnonymous Monks are no longer allowed to use Super Search, due to an excessive use of this resource by robots.