Beefy Boxes and Bandwidth Generously Provided by pair Networks
Syntactic Confectionery Delight

comment on

( #3333=superdoc: print w/replies, xml ) Need Help??
Formalise the idea that, even with recursion, regexes aren't Turing complete.
I think your approach of looking at the space required to simulate recursive regexes is the most straight-forward approach.

A back-of-the-envelope calculation is as follows: the "state" that describes the regex evaluation consists of a stack. Each level in the stack corresponds to a nonterminal (i.e., regex to match at this recursive level), a position in the original string, and any captures and alternations already made by the regex. You can stop simulating this branch of the regex match every time the stack contains a repeated configuration, since if the regex will eventually match, then it must also match using a stack with no repeats. So you are only bound by the number of distinct stack configurations. Say, (# of nonterminals * length of string * 2^(# alternations in the regex) * (length of string)^(2 * # of captures)). The last term is to store a "start" and "end" pointer for each capture.

Whatever this comes out to be, it is some fixed function of the input size (I guess in the EXPSPACE family), so there is some fixed space bound. By the Space hierarchy theorem, there are always languages that require more space.

Do we need anything more than honest-to-goodness regular expressions?
Probably not. You should be able to evaluate an SK-expression from the bottom up (instead of top-down) if it is fully parenthesized. Something like this:
s/\(S([^()])([^()])([^()])\)/($1($3($2$3)))/; s/\(K([^()])([^()])\)/$1/; s/\(I([^()])\)/$1/;
i.e., always evaluate the "innermost" expression, which will be the one without parentheses. I think something like this may work though I've not tested it.
Set up a recursive substitution to recognise functional equivalence of combinators (so that it could identify ``SKK and ``SKS as functionally equivalent).
Equivalent to the halting problem in the general case. Let an SK-expression simulate a Turing machine M on input x. Is it equivalent to the SK-expression that always returns true?


In reply to Re: Turing completeness and regular expressions by blokhead
in thread Turing completeness and regular expressions by JadeNB

Use:  <p> text here (a paragraph) </p>
and:  <code> code here </code>
to format your post; it's "PerlMonks-approved HTML":

  • Posts are HTML formatted. Put <p> </p> tags around your paragraphs. Put <code> </code> tags around your code and data!
  • Titles consisting of a single word are discouraged, and in most cases are disallowed outright.
  • Read Where should I post X? if you're not absolutely sure you're posting in the right place.
  • Please read these before you post! —
  • Posts may use any of the Perl Monks Approved HTML tags:
    a, abbr, b, big, blockquote, br, caption, center, col, colgroup, dd, del, div, dl, dt, em, font, h1, h2, h3, h4, h5, h6, hr, i, ins, li, ol, p, pre, readmore, small, span, spoiler, strike, strong, sub, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, wbr
  • You may need to use entities for some characters, as follows. (Exception: Within code tags, you can put the characters literally.)
            For:     Use:
    & &amp;
    < &lt;
    > &gt;
    [ &#91;
    ] &#93;
  • Link using PerlMonks shortcuts! What shortcuts can I use for linking?
  • See Writeup Formatting Tips and other pages linked from there for more info.
  • Log In?

    What's my password?
    Create A New User
    and the web crawler heard nothing...

    How do I use this? | Other CB clients
    Other Users?
    Others having an uproarious good time at the Monastery: (8)
    As of 2020-01-24 13:54 GMT
    Find Nodes?
      Voting Booth?