http://www.perlmonks.org?node_id=81679


in reply to Algorithm::Genetic

As an addition test case that I'm using, I've taken the concepts in Genetic Programming or breeding Perls, and used them to develop the following code:
#!/usr/bin/perl -w use strict; use Algorithm::Genetic; use Data::Dumper; my @genes = qw{ $x+=1; $x=$y; $y=$x; $x|=$y; $x+=$y; }; my $target = 100; my $algo = new Algorithm::Genetic( { FITNESS => \&fitness, MUTATOR => \&mutate, REAP_CRITERIA => sub { $_[ 0 ]->{ FITNESS } }, MUTATE_CRITERIA => sub { (10000-$_[ 0 ]->{ FITNESS } )**2 } } ); my @initcode; foreach ( 0..10 ) { my @bits = map { int rand @genes } ( 0..10 ); $initcode[ $_ ] = \@bits; }; $algo->init_population( @initcode ); for (1..100) { print "GENERATION $_\n"; print "-------------\n"; print join "\n", map { eval_code( get_code( @$_ ) ).' : '.get_code +( @$_ ) } reverse $algo->get_population(); print "\n"; $algo->process_generation(); print "\n"; } sub mutate { my @clone = @{ $_[0]->{ DATA } }; if ( int( rand() + 0.5 ) ) { # mutate by switching a new op in my $pos = int rand @clone; my $newop = int rand @genes; while ( $newop == $clone[ $pos ] ) { $newop = int rand @genes; } $clone[ $pos ] = $newop; } else { # mutate by adding a new op in push @clone, $genes[ int rand @genes ]; } return \@clone; } sub fitness { my $code = $_[0]->{ DATA }; # Calculate the fitness; my $string = get_code( @$code ); my $calc = eval_code( $string ); return ( $calc - $target )**2; } sub get_code { my $string = 'my $x = 1; my $y = 1; '; $string = join '', $string, map { $genes[ $_ ] } @_; return $string; } sub eval_code { return eval( $_[0] ); }

While probably not as robust as the original entry, the solutions I'm getting are converging to the target value even after 100 generations, so something is working right...


Dr. Michael K. Neylon - mneylon-pm@masemware.com || "You've left the lens cap of your mind on again, Pinky" - The Brain