Beefy Boxes and Bandwidth Generously Provided by pair Networks
more useful options

comment on

( #3333=superdoc: print w/replies, xml ) Need Help??
I am not sure if you had a chance to look at my node Re^7: Algorithm for cancelling common factors between two lists of multiplicands

I guess my approach is same as Limbic~Region as I was using subtraction of lower factorial terms with higher ones.

I copied the input list from one of your previous examples and I have  45700 instead of 4570 but aside from that the implementation should be easy to understand.

I guess if you sort numerator and denominator and subtract them you should be all set. I have not proved this formally but here is a stab at a simple proof that shows sorting and subtracting should work...

Let the fraction be

X! Y! Z! ------- a! b! c! WLOG let's assume that X > Y > Z and a > b > c. Also let's assume that + b > Y , X > a (weaker assumption: Z > c)...<p> NOTE: if we divide X!/a! we will have (X-a) elements <p> To Prove: (X-a) + (Z-c) + (b-Y) is the shortest list one can find or in other words (X-a) + (Z-c) + (b-Y) <= (X-p) + (Z-q) + (r-Y) for any p,q,r in permut +ation(a,b,c) Proof: From the above equation since b > Y and Z > c, r should be equal to ei +ther a or b. If r = b then the solution is trivial<p> If r = a then we get (X-a) + (Z-c) + (b-Y) ?<= (X-b) + (Z-c) + (a-Y) canceling terms -a - c + b ?<= -b -c + a -a + b ?<= -b + a ====> YES since a > b we see that r = a is not the smallest list so r = b<p> Similarly we can also show that (X-a) + (Z-c) + (b-Y) <= (X-a) + (Y-c) + + (b-Z)
I don't think this is a rigourous proof this method but i sort of feel sorting and subtracting should give us what we need...



PS: I think there will be 47448 elements and not 47444 as you suggested? as you need to count the first element too..

In reply to Re^3: Algorithm for cancelling common factors between two lists of multiplicands by sk
in thread Algorithm for cancelling common factors between two lists of multiplicands by BrowserUk

Use:  <p> text here (a paragraph) </p>
and:  <code> code here </code>
to format your post; it's "PerlMonks-approved HTML":

  • Posts are HTML formatted. Put <p> </p> tags around your paragraphs. Put <code> </code> tags around your code and data!
  • Titles consisting of a single word are discouraged, and in most cases are disallowed outright.
  • Read Where should I post X? if you're not absolutely sure you're posting in the right place.
  • Please read these before you post! —
  • Posts may use any of the Perl Monks Approved HTML tags:
    a, abbr, b, big, blockquote, br, caption, center, col, colgroup, dd, del, div, dl, dt, em, font, h1, h2, h3, h4, h5, h6, hr, i, ins, li, ol, p, pre, readmore, small, span, spoiler, strike, strong, sub, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, wbr
  • You may need to use entities for some characters, as follows. (Exception: Within code tags, you can put the characters literally.)
            For:     Use:
    & &amp;
    < &lt;
    > &gt;
    [ &#91;
    ] &#93;
  • Link using PerlMonks shortcuts! What shortcuts can I use for linking?
  • See Writeup Formatting Tips and other pages linked from there for more info.
  • Log In?

    What's my password?
    Create A New User
    and the web crawler heard nothing...

    How do I use this? | Other CB clients
    Other Users?
    Others studying the Monastery: (4)
    As of 2019-12-09 04:28 GMT
    Find Nodes?
      Voting Booth?

      No recent polls found